

Exercise 1. Estimating Renewable Heat (Solar Thermal)

18th APEC Workshop on Energy Statistics: Joint APEC-IRENA Workshop on Renewable Energy Statistics

Tokyo, Japan 15-17 December 2020

• Fifi Indarwati, Senior Resercher, APERC/ESTO

Outline of presentation

- 1. What is Solar Thermal Energy (STE) or Solar Thermal Systems ?
 - ✓ How Solar Thermal Systems Work ?
 - ✓ Solar Thermal System Classification
- 2. The Proposed Method
- 3. How to do the Exercise ??
 - Mexico Data (by presenter)
 - Other Economies Data (by participants)

What is Solar Thermal Energy (STE) or Solar Thermal Systems ?

- collects heat energy from sunlight converting the sunlight into usable thermal (heat) energy
- are typically mounted on the roof, with no obstructions (trees, hills, buildings) that would cause shading over solar thermal systems, at any time of the day
- are classified as low-, medium-, and high-temperature collectors

This session will exercise only on solar thermal, not solar PV

How Solar Thermal Systems Work ?

Solar Thermal System Classification

No	Classification	Material	Utilization
1	Low (<110 degrees Fahrenheit)	metallic or nonmetallic absorbers (unglazed)	used in such applications as swimming pool heating and low-grade water and space heating
2	Medium (>110 or 140 to 180 degrees Fahrenheit)	 glazed flat plate using air or liquid as the heat transfer instrument evacuated tube collectors. 	mainly used for domestic hot water heating for residential and commercial use
3	High (>180 degrees Fahrenheit)	parabolic dish or mirror or lenses designed to operate at a temperature	primarily used by utilities and independent power producers to generate electricity for the grid • Concentrated Solar Thermal (CST) • Concentrated Solar Power (CSP)

Solar Thermal Energy Statistics

"Solar thermal production is the heat available to the heat transfer medium minus the optical and collector losses" (IEA and Eurostat)

For solar water systems, at the end user (which is the case for most solar systems), **the final energy consumption** is the **solar thermal production** - thus the collector output !

Only if the **solar heat is centrally produced and distributed over a network**, the final energy is <u>the solar heat output</u> and therefore in most cases the final energy is the solar thermal production (the primary energy)

In order to calculate the system output, losses from piping, storage, etc. would need to be deducted

The Studies behind the Method

- Several studies were dedicated to the development of a generally accepted method to calculate and monitor the production of solar thermal energy.
- Some of these studies were carried out within the scope of projects that supported by the Intelligent Energy Europe Programme and also IEA

The analysis was performed on four different applications for solar thermal systems (following the categories in IEA-SHC Solar Heat Worldwide):

- Unglazed systems typically for swimming pool heating
- Domestic hot water systems (DHW) in one-family houses
- Domestic hot water systems (DHW) in multi-family houses
- Combined domestic hot water and space heating systems in one- and multi-family houses (Combi-systems)

The annual solar collector output in kWh can be expressed - within reasonable uncertainty - as follows

As a function of the installed solar collector area: Un-glazed collectors: 0.29 * H0 * Aa Glazed collectors in DHW systems: 0.44 * H0 * Aa Glazed collectors in combi-systems: 0.33 * H0 * Aa As a function of the installed collector nominal thermal power: Un-glazed collectors: 0.42 * H0 * Pnom Glazed collectors in DHW systems: 0.63 * H0 * Pnom Glazed collectors in combi-systems: 0.47 * H0 * Pnom

Being:

H0: Annual global solar irradiation on horizontal the given location in kWh/m² Aa : Collector aperture area in m²

Pnom : Nominal thermal power output of collector in kW

How to do the Exercise ??

18th APEC Workshop on Energy Statistics Joint APEC-IRENA Workshop on Renewable Energy Statistics

<u>Hands-on Exercise:</u> Energy Balance Solar Thermal

- The purpose of this exercise is to take heating data and complete the solar thermal column of an energy balance.
- Attached is a worksheet showing the solar thermal energy column of the IRENA energy balance template for Mexico. Use the information about solar water heaters to estimate the consumption and production of solar thermal energy in each country and complete the two columns.

Average of Global Horizontal Irradiance (kWh/m2 per year)

Solar Water Heater Capacity

- Total number of systems
- Average collector are per system (m2)

Domestic hot water systems consist of 2 types:

- Single Family Homes
- Multi Family Homes

Please open the MS.Excel file for exercise !!

Data that are needed for Hands-on exercise (2)

No.	APEC Members	Global Horizontal	Total Number of Systems		Average Collector Area per System		
		Irradiance	DHWS -	DHWS -	DHWS - SFH	DHWS – MFH	
		kWh/m²	Single Family House (SFH)	Multi Family House (MFH)	m2	m2	
1	Australia	1,674.0	997,961.1	6,451.0	3.5	50.0	
2	Brunei Darussalam	NA	NA	NA	NA	NA	
3	Canada	1,351.4	6,677.5	6,775.0	6.0	50.0	
4	Chile	1,752.7	103,657.1	1,630.0	2.0	50.0	
5	China	1,281.9	78,375,375.0	3,376,170.0	4.0	50.0	
6	Hong Kong	NA	NA	NA	NA	NA	
7	Indonesia	NA	NA	NA	NA	NA	
8	Japan	1,175.2	889,241.0	155.0	4.0	50.0	
9	Korea	1,161.1	428,663.1	2,815.0	4.0	50.0	
10	Malaysia	NA	NA	NA	NA	NA	
11	Mexico	1,706.3	486,474.4		4.0		
12	New Zealand	1,401.2	31,929.0	319.0	4.0	50.0	
13	PNG	NA	NA	NA	NA	NA	
14	Peru	NA	NA	NA	NA	NA	
15	Philippines	NA	NA	NA	NA	NA	
16	Russia	996.0	909.1	400.0	4.0	50.0	
17	Singapore	NA	NA	NA	NA	NA	
18	Chinese taipei	1,372.2	340,876.1	3,068.0	4.8	30.0	
19	Thailand	1,764.8	35,708.3	147.0	4.0	80.0	
20	USA	1,646.1	256,208.2	71,738.0	6.0	50.0	
21	Viet nam	NA	NA	NA	NA	NA	

Energy Balance of Solar Thermal

Production of solar thermal (GWh convert to TJ)

 Final consumption, could be assumed equal to production. But you will need to investigate in what sector that the solar thermal is consumed

 If there are data on electricity generation from solar thermal, then the input to electricity generation should be calculated using information on the efficiency of the power plant. The result will then be used to calculate the Final Consumption by subtracting production with the electricity generation.

Supply and Concumption		Solar			
Supply and Consumption		Thermal			
2016		TJ			
Production	(+)				
Imports	(+)				
Exports	(-)				
Stock changes	(+)				
International Bunkers	(-)				
Domestic supply	(=)				
Transfers					
Statistical Differences					
Power plants					
CHP plants					
Commercial heat plants					
Charcoal production					
Biomass pellet and briquette					
production					
Other transformation					
Energy sector and own use					
Distribution losses					
Total final consumption					
Industry sector					
Transport sector					
of which road transport					
Commercial and public					
services					
Residential					
of which traditional uses					
Other					

We will calculate and input estimated data in yellow cells

□ 1 GWh = 3.6 TJ

 Annual production of solar thermal energy in kWh (as function of installed collector area)

Glazed collectors in DHW: 0.44 * HO * Aa

For further details see IEA Solar Heating and Cooling Programme: http://www.ieashc.org/Data/Sites/1/documents/statistics/Calculation_Method.pdf

Example: Russia

	Total Number of Systems	Average Collector Area per System (m ²)	Total Collector Area (m ²)	Total Yield of Russia		
				* 0.44 (become m ²⁾	* GHI or 996 kwh/m ² (become kw)	/10^6 (Kwh to Gwh)
DHW- SFH	909.1	4	3,636	3,636 X 0.44 = 1,599.8	1,599,840 x 996 = 1,593,440.6	1.6
DHW- MFH	400	50	20,000	20,000 X 0.44 = 8,800	8,800 x 996 = 8,764,800	8.8
Total			23,636		1,602,205,440	10.36

10.36 GWh * 3.6 = 37.29 TJ

Thank you for your attention

https://www.egeda.ewg.apec.org/ https://irena.org/

18th APEC Workshop on Energy Statistics

Joint APEC-IRENA Workshop on Renewable Energy Statistics