

Tracking energy efficiency indicators in households

Thomas ELGHOZI | International Energy Agency

Joint APEC-IEA training workshop on end-use energy consumption data – Nov. 16th 2022

Why is the residential sector important?

Residential buildings and appliances determine our quality of life!

Overview

- 1. What we can learn from the **energy balances**?
- 2. What can we learn from **end-use data and energy efficiency indicators**?

Examples from similar economies

Collecting end use data and **developing indicators**

3. How to **collect data** on residential buildings?

Data collection: **a dialogue** with other economies

Appendix: how to perform temperature correction?

What can we learn from the energy balances?

Residential consumes a fifth of final energy in APEC and IEA

The residential sector accounts for about 20% of the final energy consumption, both in the APEC and IEA economies. It's the third largest sector, after industry and transport.

Ie0

Residential energy consumption varies between economies

Energy consumption in residential per capita

Source: IEA Energy Balances, 2021

Residential consumption is very dependent on the climate and the quality of life (size of dwellings, appliances...), so it varies greatly between economies. Per capita consumption decreased in most places.

120

Fuel share in residential sector

- Which end uses consume the most energy (heating, cooking, cooling...)?
- Which aspect of our life will be affected in case of energy price spike?
- What is the share of LPG / electricity used for cooking?
- Are we using energy for **space heating** more efficiently over time?

What can we learn from end-use data and energy efficiency indicators?

Examples from similar economies

Detailed end-use data provides more information for policy focus

led

Residential energy consumption by end use in Turkey and the United States, 2019

Detailed consumption by end use allows to analyse energy consumption.

Turkey and the United States show consumption similarities despite being very different countries.

Fuel share by end use gives crucial insights on the energy system

Consumption data split by end use and by fuel allows to understand the impact of weather, technology deployment and cultural habits on the energy system.

Efficiency indicators to compare periods and regions

Source: IEA Energy Efficiency Indicators, 2021

Residential consumption by end use and activity data allow to identify the most intensive end uses, follow the evolution through time and compare regions.

Breaking into different carbon intensities for each end use

End use and fuel shares of residential consumption allow to identify the most intensive end uses. It also clarifies why, from the fuels on which they rely, providing key information to tailor energy policies.

Efficiency indicators to explain consumption patterns and trends

Efficiency indicators help understand the trends and key drivers of energy consumption, here thanks to residential activity data: population, number of dwellings and size of dwellings.

led

Collecting end use data and developing energy efficiency indicators

Residential indicators – Energy and activity data

Activity data

- Population
- Number of occupied dwellings
- Residential floor area
- Appliances stock and diffusion

- Space heating*
- Space cooling*
- Water heating
- Cooking
- Lighting
- Appliances energy consumption (refrigerator, freezer, cloth washer, cloth dryer, dish washer, TV, computer)

*: Temperature corrected, using HDD and CDD

Activity data

- Population
- Number of occupied dwellings
- Residential floor area
- Appliances stock and diffusion

led

Occupied dwellings *vs* total dwellings

Primary residences

Unoccupied dwellings

Vacation homes

What drives the residential energy consumption?

Decomposition analysis from detailed end use and activity data gives the respective impact of key drivers of residential energy consumption, and providing key insights for policy design.

Decomposition analysis for the residential sector

of activity, stru	ucture and efficiency ef	fects for eac	ch residential end	use in our decompo
Sector	Subsector/ End use	Activity	Structure	Efficiency effect
	Residential space heating	Population	Floor area per population	Temperature corrected space heating energy consumption per floor area
	Residential water heating	Population	Occupied dwellings per population	Water heating energy consumption per occupied dwelling
Residential	Residential cooking	Population	Occupied dwellings per population	Cooking energy consumption per occupied dwelling
	Residential space cooling	Population	Floor area per population	Temperature corrected space cooling energy consumption per floor area
	Residential lighting	Population	Floor area per population	Lighting energy consumption per floor area*
	Residential appliances	Population	Appliances stock per population	Appliances energy per appliance stock

Activity is tracked though population, number of dwellings, residential floor area, and appliances stock. Various indicators can be build, but one needs to choose carefully the most relevant.

How to collect data on residential buildings?

Methods to collect residential end-use and activity data

Administrative sources	Basis as many data are often already gathered. Essential starting point.	National statistics office Land registry Building registers			
Survey	Costly but very effective . To be designed carefully , ideally from existing one. Representative sample is key.	Real estate Manufacturers / vendors Building managers or residents			
Measuring	Costly but very effective . Often focused on specific equipment.	Utilities Fuel vendors Smart meters			
Modelling	Complementary to survey (e.g. for higher frequency) or stand-alone. Requires robust input data.	Sales, stocks and replacement rates of heating / cooling systems and appliances New dwellings			
Always check what data may be available in other institutions and how to complete existing data collection, before setting a new one up.					

Data collection: a dialogue with other economies

What worked well? What to avoid?

IEA sharing platform – An experience database

National data collection practices						
0	to collect data on energiort, industry, residential					
Countries Australia, Aus	stria, Belgium, Brazil, Cana	ada, Czech Republic, Denm $\stackrel{\scriptstyle imes}{}$	Sectors O selected			
Methodologies O selected		~	Methodologies O selected			
Search Questionnaire						
Reset 16 practic	es found					
↓ Practice		Country		Sector	Methodology	Available content
/Su/02	Austria			Industry	Surveying	Yes
/Su/05	Belgium			Industry	Surveying	Yes
/Su/06	Belgium			Industry	Surveying	Yes
/Su/08	Canada			Industry	Surveying	Yes

Contact us at EnergyIndicators@iea.org and share your practice

https://www.iea.org/articles/national-data-collection-practices

A searchable database, gathering data collection practices from a variety of economies, to share expertise worldwide

Administrative sources	Indonesia USA	Digitalise data storage to efficiently share data Consider merging with other surveys, harmonising data collections
Modelling	Australia New Zealand	Consolidate estimates used as input data through feedback Ensure robust quality controls , from input data to modelling assumptions
Survey	Philippines	Carefully design questionnaire, focusing on user-friendliness, interview time and multiple languages
ully designed to	USA	Carefully design surveying tool, including error and check management, and accuracy of qualitative questions and available resources, are essential for efficient data collections.

Icon credits: Iconiqu; Nithinan Tatah IEA 2021. All rights reserved.

Successful data collections – Resources and methodology

Adminis sour	• unit	ada	Need clear, reliable institutional arrangements		
Measu	uring New	Zealand	Allow resources and documenting over the whole deployment time		
Mode		_	Carefully record model documentation Define clear assumptions , in line with available input data		
Surv	/ey		Ensure quality and resilience of the interviewing staff Provide enough staff and resources for data processing		
Durable resources – in staff, finances and framework – need to be allocated to ensure robust data collections.					

Icon credits: Iconiqu; Nithinan Tatah IEA 2021. All rights reserved.

Successful data collections – Human factors

Administrative sources	USA	Ensure long-term access to the right respondents
Measuring	New Zealand	Ensure longevity of measurement agreements thanks to long-term relationships
	China	Provide non-monetary incentives and modelling complement
Survey	Indonesia	Establish local community relationships to obtain support and increase response rate
	Philippines	Reinforce institutional arrangements to ensure survey frequency
Foster relationshi	ps with every partner – i	nstitutions, companies, communities – is key for high quality data.

Icon credits: Iconiqu; Nithinan Tatah IEA 2021. All rights reserved.

APPENDIX How to perform temperature correction?

Temperature correction – Cooling degree days

Temperature correction – Adjusting energy consumption

Adjusted energy for space cooling (simplified method)

Calculation example

Average CDD over the period $CDD^{avg} = 929$

Year – Y	2017	2018	2019
CDD of year Y – CDD_Y	905	874	1008
Energy for space cooling – E_{SC} (PJ)	20.5	19.2	21.8
Adjusted energy for space cooling – $E_{SC}^{adj.}$ (PJ)	$20.5 \times \frac{929}{905} = 21.0$	$19.2 \times \frac{929}{874} = 20.4$	$21.8 \times \frac{929}{1008} = 20.1$

Temperature correction – Adjusted energy consumption

Temperature correction allows to identify more clearly the trends, removing the weather impact on consumption.

lea