

Energy Transition Plan of Viet Nam ELECTRICITY PRODUCTION ASPECT

Tokyo, 12/09/2023

- 1. Energy Master Plan of Viet Nam
- 2. Energy Transition Plan of Viet Nam (electricity production aspect)

- Overview of Energy Master Plan of Viet Nam
- Specific targets

Total Final Energy Consumption (KTOE)

	2010	2015	2020
Coal	7,513	7,960	20,455
Oil Gasoline	14,361	18,030	19,604
Gas	493	1,167	1,495
Renewable Energy	10,185	8,159	5,710
Power	7,278	12,246	18,749
Total	39,831	47,561	66,014

Total Primary Energy Supply (KTOE)

	2010	2015	2020	
Coal	13,850	22,590	49,752	
Crude oil and Petroleum products	16,099	17,984	23,387	
Gas	8,316	8,223	7,821	
Renewable Energy	12,959	14,121	14,672	
Power import/export	386	84	130	
Total	51,610	63,002	95,762	

Import/Export (KTOE)

	2010	2015	2020
Import	12,088	17,074	53,605
Export	21,186	11,798	7,666
Net import	-9,098	5,276	45,939
Net import/TPES	-17.6	8.4	48.0
(%)			

тт	Indicator	Unit	2010	2015	2020					
1	GDP (comparative price 2010)	Trillion	2,740	3,697	5,006					
2	Population	Million people	87.06	92.22	97.58					
3	Urban population structure	%	30.4	33.5	36.8					
4	GDP per capita (real price)	USD	1,690	2,596	3,552	31				
5	Total primary energy supply (TPES)	Million TOE	51.6	63.0	95.8					
6	Total final energy comsumption (TFEC)	Million TOE	39.8	47.6	66.0					
7	TPES per capita	kgOE/capita	593	683	981					
8	TPES per GDP	kgOE/1000USD	445	408	463					
10	Electric consumption per capita	kWh/capita	972	1,548	2,229					
11	Electric consumption per TFE	%	18.3	25.7	28.4					
12	Total CO2 emissions from energy activities	Million tons CO2	147	158	273					

Energy economic indicators 2010-2020

- Energy demand increased rapidly to meet socio-economic development.
- > Electricity consumption per capita raised fast.
- Increased use of fossil fuels leads to significant impact in environmental and increases emissions.

Specific goal

To ensure national energy security		2030	2050	To develop energy industry	2021-2030	2031-2050
	Total Final Energy Consumption (TOE)		165 - 184 Million tons	Crude oil exploitation volume	6,0 – 9,5 Mill.tons/vr	7,0 – 9,0 Mill tons/vr
0	Total Primary Energy Supply (TOE)	155 Million tons	294 - 311 Million tons	Natural gas exploitation volume	5,5 - 15	10 - 15
	Country petroleum reserves net imported	75 - 80 Days	90 Days	S	Bil.m3/yr	Bil.m3/yr 39
	Just energy transition Share of renewable energy in Total Primary Energy Supply	15 - 20%	15 - 20% 80 - 85%	Coal exploitation volume	Mill.tons/yr	Mill.tons 2045
ſ	Energy saving rate (compare to BAU scenario)	8 - 10%	15 - 20%	Clean energy produce and development (Green hydrogen manufacturing)	100 - 200 Ktons/yr	10 - 20 Mill.tons/yr
	Total CO2 emissions	399 - 449 Million tons	101 Million tons			
	CO2 emission cut – down rate	17 - 26%	90%			

Energy Demand

Share of TFEC

- TFEC will increase to 107 million TOE by 2030 and target about 165-184 million TOE by 2050.
- Energy savings of 10 million TOE by 2030, equivalent to 8.4% compared to the normal development scenario.

Demand of Total final Energy Consumption Unit: Mill.TOE

	2020	Planning	g scenario	- Base	Plannin	g scenario	- High
		2025	2030	2050	2025	2030	2050
Coal	20.5	17.9	19.5	7.7	17.6	19.5	8.1
Gasoline*	5.9	7.7	9.0	0.1	7.7	8.9	0.1
Jet fuel*	0.8	1.2	1.5	0.0	1.2	1.5	0.0
Kerosene	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DO*	8.8	13.0	16.1	2.8	13.0	16.0	3.0
FO	0.4	0.4	0.4	0.0	0.4	0.4	0.0
LPG	2.6	2.8	3.0	3.5	2.8	3.0	4.0
Natural gas	1.5	1.0	2.0	5.6	1.3	2.2	6.9
Biofuel	0.1	0.2	0.3	10.2	0.2	0.3	9.8
Aviation gasoline	0.0	0.0	0.0	3.0	0.0	0.0	3.5
Hydrogen	0.0	0.0	0.0	11.9	0.0	0.0	12.6
Amoniac	0.0	0.0	0.0	6.1	0.0	0.0	8.6
Biomass	5.6	9.6	11.9	18.3	9.7	11.9	19.0
Solar	0.0	0.0	0.0	0.4	0.0	0.1	0.5
Electricity	18.7	28.8	43.4	95.8	28.8	43.4	107.9
Total	64.8	82.7	107.2	165.4	82.7	107.2	184.0

* Domestic petroleum demand excludes the amount of fuel supplied to international airlines, temporarily imported for re-export at warehouses

Energy Supply

Share of TPES

- TPES will reach 155 million TOE by 2030 and orientation of about 294-311 million TOE by 2050;
- The proportion of renewable energy will reach about 19.8% in 2030 and about 80% in 2050
- The proportion of imported fuel will be about 50% by 2030 and the orientation will be less than 15% by 2050

Total Primary Energy Supply Unit: Mill.TOE

		Plann	ing scenario	-Base	Planni	ng scenario ·	- High
	2020	2025	2030	2050	2025	2030	2050
Coal	49.8	52.2	59.1	14	51.9	55.1	14
Oil	23.4	28.1	33.9	10.7	28.2	33.9	11.7
Gas	7.8	9.9	30.7	20.6	10.3	33.2	22.2
Imported Power	0.1	0.1	0.2	0.2	0.1	0.1	0.2
Hydro power	6.3	8.2	8.7	9.9	8.2	8.7	9.9
Biomass	7.4	10.4	14.1	30.9	10.4	13.8	31.5
Biofuel	0.1	0.2	0.3	13.3	0.2	0.3	13.3
Solar	0.8	2.5	2.9	80.9	2.5	2.9	82
Wind	0.1	2.9	4.9	95.4	2.9	6.7	103.5
Hydrogen- based fuel	-	-	0	17.8	-	0	22.8
Total	95.8	114.4	154.8	293.7	114.6	154.8	311.1

Щ

CO2 emission

CO2 Emission Unit: Million tons CO2 equivalent

Scen ario	Item	2020	2025	2030	2035	2040	2045	2050
	Coal	84	74	80	81	74	64	32
	Gas	4	2	5	7	9	11	13
	Oil	55	75	90	94	87	69	18
Base	Energy exploitation	16	14	21	17	12	11	10
	Power generation	115	155	254	254	220	149	31
	CO2 capture	0	0	0	0	1	2	3
	CO2 net emission	273	320	449	452	401	303	101
	Coal	84	72	80	81	76	66	33
	Gas	4	3	5	7	10	13	16
	Oil	55	75	89	95	92	77	20
High	Energy exploitation	16	14	21	17	12	11	10
	Power generation	115	155	204	226	182	107	27
	CO2 capture	0	0	0	0	1	3	6
	CO2 net emission	273	319	399	427	370	272	101

- ✓ Greenhouse gas emissions will reach about 399-449 million tons in 2030 and about 101 million tons in 2050.
- ✓ Emission levels are in line with the emissions target of the Climate Change Strategy to 2050 to achieve PTR0.

Reduced CO2 emissions compared to the normal development Scenario

Reduced CO2 emissions High scenario 2050 Reduced CO2 emissions High scenario 2030 _0 -20 -11 -200 -132 -8 -40 Million tons -60 -400 -43 -4 -80 -324 -36 Million tons -600 100 120 -800 140 -1,000 160 -5 3 -1,061 -165 180 Pomer generation -1,200 Power generation coa/ energy exoloit energy exploit Coa/ enission gage of the second seco Sel enission 500 7.0 457 CO2 capture 452.3 Base scenario 6.0 450 6.0 400 equivalent 350 300 426. 5.0 CO2 capture tons CO2 capture High scenario 4.0 8250 Willion tons 1200 Million 150 100 Base scenario 3.0 Million 1 2.0 1.0 101 High scenario 1.0 50 0 $\mathcal{V}^{\mathbf{N}}$ γ γ γ

SOLUTIONS ASSURING ENERGY SECURITY AND ENERGY TRANSITION Efficient use of energy Electrification in Developing new energy Renewable energy Carbon capture, use sources (H2, green NH3) economic sectors development and storage 2025 Ensure efficient 2030 Domestic oil and gas 2040 Continue to convert fuels 2050 Completely convert fuels exploitation exploitation and use of for thermal power plants: for existing thermal power: H2, NH3, biomass domestic oil, gas and coal H2, NH3, biomass No new coal-fired power resources development **HVDC** Power RE: offshore wind 70-91 Renewable power: 6 GW Construction of LNG Transmission GW, onshore wind 66-77 offshore wind, 22 GW GW, Solar power 169-189 import infrastructure 90% of households have onshore wind, 22.4 GW. GW Encourage selfaccess to high-ING Gas Power consumption and coperformance technology Using 100% green fuel in 100% E5 gasoline in generation of electricity transportation Promote production and transportation 50%-70% of households use of high-grade Flectric vehicles 40-50% 70% of households have have access to highbiofuels in transportation access to high-performance 100% of households efficiency technology technology Electric vehicles 10-20% have access to high-Producing, importing and performance technology Implementing a carbon trading in coal-fired boilers neutral building 100% new building is not allowed construction is carbon Green H2 production Enforce green building neutral capacity 6 million tons standards Green H2 production Producing non-energy Guaranteed petroleum capacity 10-20 million products from coal reserve over 75-80 days of tons net import CO2 capture capacity 1 CO2 capture capacity 3-6 million tons million tons

- Energy Transition Plan of Viet Nam (electricity production aspect)
- Challenges to facilitate the enegy transition in power generation

Capacity expansion in the THE NATIONAL ELECTRICITY DEVELOPMENT PLANNING OF 2021 - 2030 AND VISION FOR 2050 (MW)

Category	2025	2030	2035	2040	2045	2050
Peak demand	59,318	90,512	124,857	159,039	187,496	208,555
Total installed capacity	97,234	150,489	242,159	354,089	470,712	573,129
Coal thermal power	28,757	30,127	23,137	15,337	3,635	0
Coal-fired thermal power using biomass/ammonia	0	0	6,990	14,790	18,642	0
Coal-fired power completely converted to biomass/ammonia	0	0	0	0	6,990	25,632
Combined cycle gas turbine and domestic gas thermal power	7,076	14,930	7,900	7,900	7,900	7,900
Domestic gas-fired thermal power with Hydrogen	0	0	7,030	7,030	0	0
Domestic gas-fired thermal power fully hydrogen-converted	0	0	0	0	7,030	7,030
Combined cycle gas turbine using LNG	2,700	22,400	22,700	12,200	0	0
Hydrogen-fired LNG combined cycle gas turbine	0	0	2,700	13,200	21,900	4,500
Fully hydrogen-converted LNG combined cycle gas turbine	0	0	0	0	3,500	20,900
LNG ICE	0	300	9,000	23,100	33,900	46,200
Oil thermal power	1,221	0	0	0	0	0
Hydropower	26,795	29,346	33,654	34,414	35,139	36,016
On the shore wind power	13,416	21,880	30,400	46,100	62,250	77,050
Offshore wind power	0	6,000	18,000	45,500	79,500	91,500
Solar power/Rooftop solar power/self-consumption solar power sources	10,136	12,836	56,866	94,866	135,824	189,294
Biomass and other RE	1,180	2,270	3,290	4,960	5,210	6,015
Pumped hydroelectric energy storage and storage batteries	50	2,700	9,450	19,950	33,750	45,550
Import	4,453	5,000	7,742	10,242	11,042	11,042
Co-generation	1,450	2,700	3,300	4,500	4,500	4,500

(No. 500/QD-TTg)

In the high operating scenario, the total installed capacity of power plants will reach 150,489 MW in 2030 and 490,529-573,129 MW in 2050 (excluding imported electricity, renewable energy serving production of new energy). The share of the capacity of RE sources (excluding hydropower) will increase from 27% in 2030 to 59,5% - 62.4% in 2050. The emissions of CO₂ will reach 253 million t in 2035, 147 million tCO₂-eq in 2045, and an estimated 31 million tCO₂-eq in 2050 which will ensure meeting Viet Nam's commitments at COP26.

Not building new coal power plants after 2030 Converting biomass and ammonia cofiring fuels for existing coal-fired power plants Early retirement for existing coal-fired power plants that are not able to covert to co-firing fuels and fully amortized.

Solution
Solution</p

Cost of prolonging life

Cost of renovation to be able to cofire with other fuels

Efficiency reduction rate in the extension life period and when co-firing with co-firing fuels

Co-firing fuel prices

- 20% ammonia combusting increases the LCOE by 34%
- Cofiring 10% biomass increases the LCOE by 19%
- Cofiring 15% biomass increases the LCOE by 20%

compared to those of 100% coal firing plants.

Solution
Solution</p

Costs incurred in the process of co-firing combustion with hydrogen fuel

Rate of reduction in efficiency during co-

fired combustion and fuel conversion

Reduction rate performance in the extended life period

3

4

Hydrogen price

Existing turbines can be co-fired to burn with Hydrogen at a rate of 30-50% and plan to use 100% hydrogen after 2030.

With a co-fired combustion rate of 30% hydrogen or less, there is no need to renovate turbines, just renovate the fuel supply and control system of a plant.

Challenges

Since a large amount of RE sources, the electricity system is encountering many challenges.

An imbalance of source - load by regions

In the **noon's off-peak hours** when the **load tends to decrease**, the **solar power** sources generate maximum output, **causing oversupply and overload**.

Solutions

Expand pumped storage hydropower, starting **expansion of existing sites** and prepare **new sites** in mountainous regions

Focus on the sites most conducive to produce high plant load factors for wind (and solar) power Consider solar PV with battery

Challenges

BESS

The application and development of BESS can be **challenging** that ranges from the **system design** and **battery sourcing** to commissioning and testing to meet grid compliance requirements. Some other challenges include:

- Resources for maintenance and optimisation to maintain BESS for a long lifetime and high performance

- The efficiency of **BESS systems is less than 100**%, so it will be necessary to increase the electricity output from other electricity sources in the system to compensate for the output consumed in the charging / discharging process of BESS.

- The **investment in BESS to limit grid overload** caused by RE sources is only a temporary solution.

Hydrogen production from RE

Hydrogen production, transportation, and storage infrastructure are not yet developed.

- Hydrogen production **technology has not been completely developed**, leading to the **high cost** of hydrogen production and not **yet being able to deliver** economic efficiency.

- **Mechanisms, policies, and incentives** for the development of hydrogen and safety standards and regulations on the production, storage, transportation, and use of hydrogen **have not been available**.

Solutions

- Facilitate application and deployment of BESS and production of hydrogen produced from RE sources, including:

o **In-depth studies on roadmaps, technologies, sites and models** for application and policies to facilitate the investment and deployment of BESS and hydrogen technologies in Viet Nam

o **Introduce incentive policies** in testing phase of technologies, with strong foreign funding

Thank you!