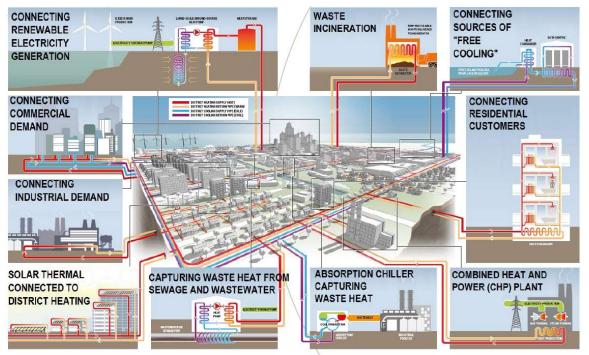
Natural cooling resources for district cooling

Dr. Zhuolun Chen Senior Advisor, Team Lead LEED AP, CMVP, CFA&CFA-ESG

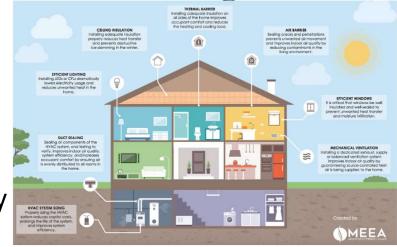

2023.09.13 Tokyo, Japan

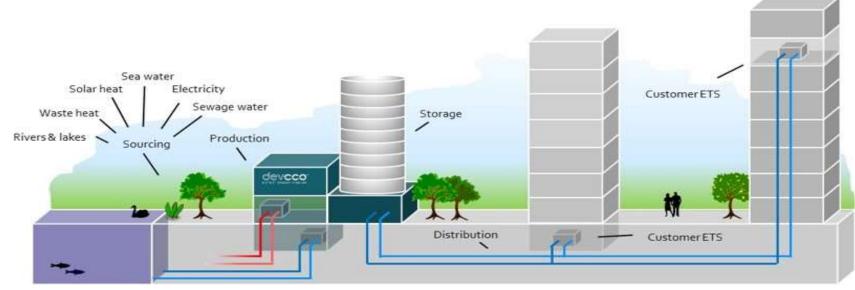
environment programme climate centre

supported by @UNOPS

environment programme

Introduction: Energy systems in cities




District energy systems for heating & cooling

UN environment programme climate centre supported by WNOPS

Building energy system

Heating/cooling production sources

District cooling systems in cities

District cooling aims to use **local energy sources** that otherwise would be wasted or not used, in order to offer for the local market a **competitive and high-energy-<u>efficient alternative</u>** to the traditional cooling solutions.

Case study: Sea water for district cooling in El Alamein, Egypt

supported by **WOPS**

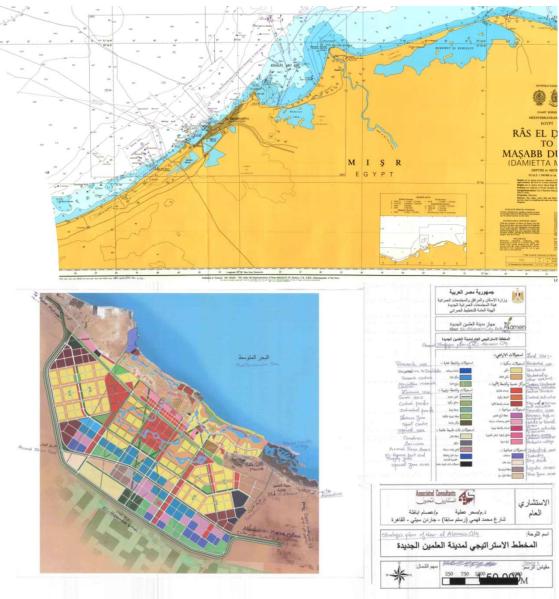
Introduction: El Alamein, Egypt

- The New El Alamein City is being built to be the modern "summer" capital for Egypt.
- Located about 110 km west of Alexandria, with easy access to the Cairo-Alamein highway, It is about 250 Km away from Cairo.
- The area is famous because of the WW 2 pivotal battle of Alamein that took place in the vicinity.

Introduction: El Alamein, Egypt

- The development area is located at the shoreline with direct access to the Mediterranean Sea
- The development consist of a mix between hotels, residential, and commercial buildings
- The project is on a "fast track" and construction is moving on in fast pace. Several high-rise buildings are at advanced stage of construction
- First cooling delivery by end of 2021 (temporary cooling solutions)
- Fully operational District Cooling system by 2025.

supported by **WOPS**


copenhagen climate centre

environment

programme

Site assessment

- Not In-Kind district cooling, capacity around 45,000 TR, final market assessment and technical configuration under evaluation
- Utilization of Mediterranean Sea as coldwater source as the admiralty map and initial seabed surveys indicates access to cold water at the development shoreline
- Production of cold water using a combination of sea water and chillers to optimize the production towards a low-GWP refrigerant, and high efficiency district cooling

Technical solutions for district cooling

- Cooling production system (DC plant): hybrid system with a combination of absorptive chillers, seawater cooling (SWAC) and electric chillers.
- Buildings: centralized cooling system with fan coils and/or air handling units
- Chilled water transition pipelines
- Seawater intake and return pipelines
- Heat exchanger/substations on the customer side

Technical solutions: cooling production

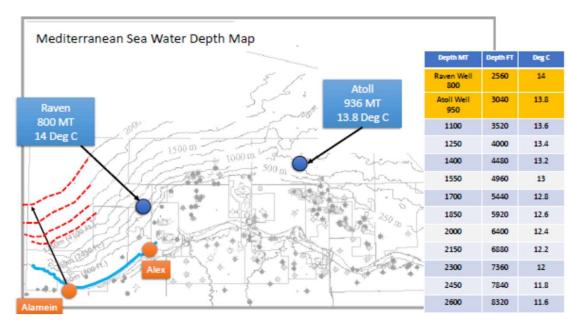
	Distributed Chillers	100% SWAC	100% absorption chillers + electric chillers	20% SWAC + 80% absorption chillers + electric chillers
The initial cost of the AC system in Millions for Towers only	<u>1338</u>	1413	975	<u>996</u>
The initial cost of the AC system in Millions for Towers and The Heritage City	<u>1848</u>	2165	1350	<u>1328</u>
The operation and maintenance cost of the AC system in Millions EGP for Towers only	335	29	152	<u>38</u>
The operation and maintenance cost of the AC system in Millions EGP for Towers and The Heritage City	460	44	213	<u>51</u>
Operation Tarrif (EGP/TR.hr)	5.1	4	4.6	4.1
Operation Tarrif (EGP/sq m.month)	35.2	27.8	31.6	28.4
Electric Power required for Towers only	<u>34.7 MW</u>	5 MW	10 MW	7 MW
Land Areas required for Towers only	Machine rooms within each towers cluster	1.2 acre including wells	1.5 acre	0.6 acre including wells

• DC grid supply & return temperature: 6/16 degree C

supported by **WOPS**

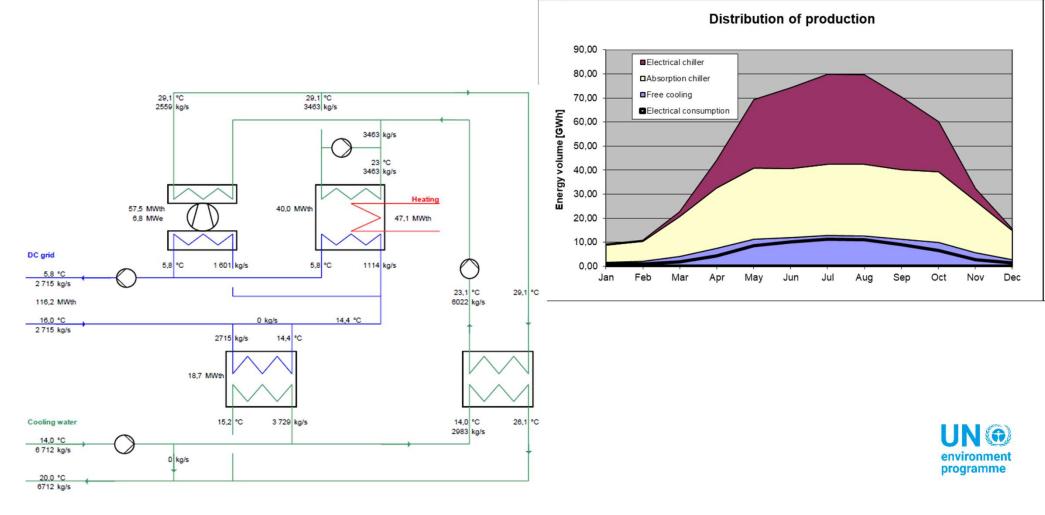
Technical solutions: Seawater cooling (SWAC)

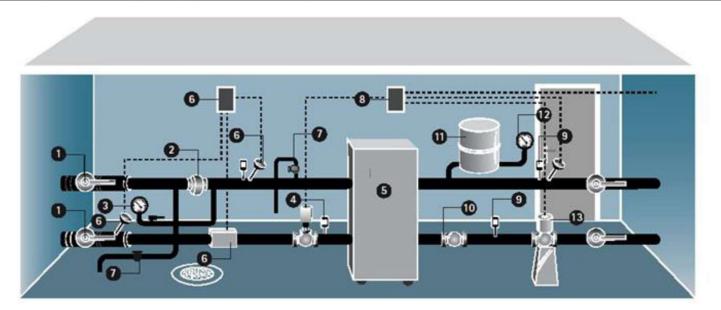
- The seawater temperature drops quickly from the surface down to a depth of approximately 200 m. At greater depths, the decline in temperature is much slower.
- In the north side of El Alamein, the seabed has a relatively flat slope and, at a distance of 25 km from the shoreline, the depth is around 1,000 m, where the water temperature is approximately 13-14°C.


				27. 17.	Aalamein Directio Flat Seque	
30" Cond@ 200 Ft					Sea Leve	I
20" Surface Cog@ 1000	ift		-	F 7	Cag @	5091 10091
13 3/8" Csg @ 3940 Ft (1200m)	Supely MT	Depth #1	Reg C	9 5/8" Csg @ \$800 Ft.	Sea wa	11.CET 1500 2000 M
	Ravers Well 900	2560	14	@ SOUTE		2500 N
	Acoli Well 950	3040	13.8			50001
	1100	3520	13.6			3500 M =11
	1250	4000	13.4			
	1400	4480	13.2			
	1550	4960	13			
	1700	5440	12.8			
	1850	5920	12.6			
	2000	6400	12.4			
	2150	6880	12.2			
	2300	7360	12			
	2450	7640	11.8			
	2000		44.6			

supported by

Technical solutions: Seawater cooling (SWAC)


- Shore crossing is achieved by means of micro tunneling and extends to a depth of approximately 10 m.
- Seawater intake is located at 850 m depth (14°C) with a required offshore pipe length of 2,500 m.


supported by

Technical solutions: cooling production

Technical solutions: heat exchanger in customer side

TECHNICAL DESCRIPTION OF A SUBSTATION

DISTRICT COOLING NETWORK

1. SERVICE VALVE 2. FILTER 3. PRESSURE GAUGE 4. THERMOMETER

copenhagen climate centre

5. CHILLED WATER EXCHANGER 6. INSTRUMENTATION 7. VENTILATION, DRAINING

SECONDARY SYSTEM CIRCUIT

8. CONTROL CENTRE 9. THERMOMETER 10. FILTER

11. EXPANSION VESSEL 12. PRESSURE GAUGE 13. CIRCULATION PUMP

supported by

UN 🌀

environment

programme

Economic feasibility analysis

Key figures	PA09	
Net present value of the project (NPV)	246 758	k\$
Internal rate of return (IRR)	22,4%	
Pay-Back (year)	2 028	
NPV / PV Investments (incl. conn. fees)	2,0	
NPV / PV Investments (excl. conn. fees)	2,0	
NPV / Customer capacity demand	1 407	
PVIncome	490 791	k\$
PV Costs	121 677	k\$
PV Investments (incl. conn. fees)	122 355	k\$
PV Investments (excl. conn. fees)	122 355	k\$

environment programme

supported by **WOPS**

Economic feasibility analysis: pricing strategy

The project indicates a technical, commercial financially feasible structure with an average tariff of around 6,8 L.E/TRh.

TARIFF STRUCTURE	
Connection Fee	0 USD/TR
Capacity Fee	739 USD/TR
Consumption Fee	0,07 USD/TRh
Average Fee	0,43 USD/TRh
Average Fee Local Currency	6,78 L.E/TRh

According to an investigation in the region, the tariff used in DC as following:

- The connection fee varies from 70 USD/TR up to 2,000 USD/TR.
- The capacity fee varies from 200 USD/TR year up to 500 USD/TR year.
- The consumption charge varies depending on local cost for water and electricity.

supported by **WOPS**

copenhagen

onment

Environmental benefits

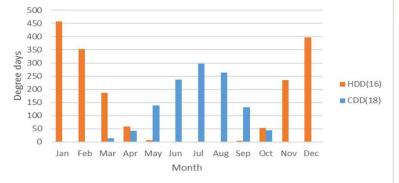
• Reduce refrigerant emissions by 99%.

• Save 139,500 tons of carbon dioxide equivalent annually, lowering CO2 emissions by 40%.

• Cut peak power demand by 52 MW.

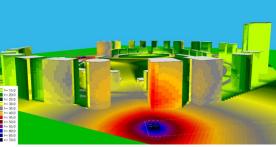
supported by **WOPS**

Case study: Sewage/waste water heat pump for district heating & cooling in Zhengzhou, China



supported by

Introduction: Zhengzhou, China


Located in Longhu District, Zhengzhou
Cover 3.1 million sq. m of commercial buildings
Use waste heat from treated waste water
Providing district heating and cooling

Environmental benefits

- Reduce refrigerant emissions by 99%.
- Save 139,500 tons of carbon dioxide equivalent annually, lowering CO2 emissions by 40%.
- Cut peak power demand by 52 MW.

Key facts of the project

Key partners

Municipality, waste water treatment factory, private company

Local government role

Land for DES plants and pipeline, 100% construction fee coverage (Turnkey or EPC), 20 years of concession for heating & cooling in the region

Private company

Operation & Management

Profit structure

Heating price is regulated by local government, cooling price is set to be 15% off standalone system

copenhagen climate centre

supported by

6

environment

programme

Key facts of the project

Challenges

- Lower carbon footprint
- Balance of reliability and efficiency of energy system
- Support of green finance

Key success factors

- District energy planning is critical
- Support from local government for franchise rights and security of connections
- Communication channel between DES supplier and end-users

Future prospect

- Application of renewable energy
- Application of smart energy technologies
 - Net-zero energy of the region

supported by **UNOPS**

copenhagen climate centre

programme

Conclusion: how to use natural cooling resources for district cooling

- Location of the end-users
- Temperature of the natural cooling resources
- Environmental impacts assessment to the water body
- How fast the heat released to the water body (river, sea etc.) can evaporate to achieve heat balance
- Different types of use: direct cooling, indirect cooling, cooling as replacement of cooling towers
- Consider to combine different kinds of cooling resources

Thank you very much!

Dr. Zhuolun Chen

email: zhuolun.chen@un.org

https://www.linkedin.com/in/zhuo lun-chen-412878140/

UNOPS pported by